ROCK2 regulates bFGF-induced proliferation of SH-SY5Y cells through GSK-3β and β-catenin pathway.

نویسندگان

  • Shuken Boku
  • Shin Nakagawa
  • Hiroyuki Toda
  • Akiko Kato
  • Naoki Takamura
  • Yuki Omiya
  • Takeshi Inoue
  • Tsukasa Koyama
چکیده

Increased neurogenesis by promoting proliferation of neural precursor cells in the adult dentate gyrus might be beneficial for the treatment of psychiatric disorders. Results demonstrate that bFGF is necessary for the proliferation of neural precursor cells and that the glycogen synthase kinase-3β (GSK-3β) and β-catenin pathway plays a role in it. However, the detailed mechanism of proliferation of neural precursor cells remains unclear. To elucidate that mechanism, we investigated the role of Rho-associated coiled-coil kinase (ROCK) in bFGF-induced proliferation using SH-SY5Y cells as a model of neural precursor-like cells. Y27632, a specific inhibitor of ROCK, decreased bFGF-induced proliferation. Lithium (Li), an inhibitor of GSK-3β, recovered Y27632-decreased proliferation and quercetin (Que), an inhibitor of β-catenin pathway, reversed the recovery effect of Li. Both nuclear β-catenin and cyclin D1 expression were altered by bFGF, Y27632, Li, and Que in parallel with the case of proliferation. Furthermore, bFGF inactivated GSK-3β through increasing the phosphorylation of Ser(9) on GSK-3β, which is reversed by Y27632 through increased phosphorylation of Tyr(216) on GSK-3β. ROCK has two subtypes: ROCK1 and ROCK2. Investigation with siRNA for ROCKs showed that ROCK2 is involved in bFGF-induced proliferation, but not ROCK1. These results suggest that ROCK2 might mediate bFGF-induced proliferation of SH-SY5Y cells through GSK-3β and β-catenin pathway. Further investigation of detailed mechanisms regulating the ROCK2/GSK-3β/β-catenin pathway might engender the development of new therapeutic targets of psychiatric disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

Expression of Gsk-3β And β-Catenin Proteins in the PMSG Stimulated Rat Ovary

Purpose: The ovary is an example of a developing tissue in which developmental prosses occur throughout reproductive life. We investigate the expression of GSK-3β and β-catenin- Wnt pathway molecules- in the rat ovary during follicular development. Materials and Methods: To induce follicular growth and development, 23 days old immature female rats were injected with 10 IU of PMSG. Forty and for...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

The Effect of Mesenchymal Stem Cell and Aerobic Exercise on the Expression of β-catenin and GSK-3β Genes in Heart Tissue of Rats in the Experimental Model of Knee Osteoarthritis

Introduction: Proliferation has long been the main source of mesenchymal stem cells (MSCs) in tissue repair , cell therapy and tissue engineering strategies. On the other hand, regular exercise as part of a person’s daily routine may help manage pathological conditions. The aim of this study was to investigate the effect of mesenchymal stem cell injection and aerobic exercise on the expression ...

متن کامل

Fluoxetine Regulates Neurogenesis In Vitro Through Modulation of GSK-3β/β-Catenin Signaling

BACKGROUND It is generally accepted that chronic treatment with antidepressants increases hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. Recently, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signaling was shown to be involved in the mechanism of how antidepressants might influence hippocampal neurogenesis. METHODS The aim of this study was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1492  شماره 

صفحات  -

تاریخ انتشار 2013